3,161 research outputs found

    Universal quench dynamics of interacting quantum impurity systems

    Full text link
    The equilibrium physics of quantum impurities frequently involves a universal crossover from weak to strong reservoir-impurity coupling, characterized by single-parameter scaling and an energy scale TKT_K (Kondo temperature) that breaks scale invariance. For the non-interacting resonant level model, the non-equilibrium time evolution of the Loschmidt echo after a local quantum quench was recently computed explicitely [R. Vasseur, K. Trinh, S. Haas, and H. Saleur, Phys. Rev. Lett. 110, 240601 (2013)]. It shows single-parameter scaling with variable TKtT_K t. Here, we scrutinize whether similar universal dynamics can be observed in various interacting quantum impurity systems. Using density matrix and functional renormalization group approaches, we analyze the time evolution resulting from abruptly coupling two non-interacting Fermi or interacting Luttinger liquid leads via a quantum dot or a direct link. We also consider the case of a single Luttinger liquid lead suddenly coupled to a quantum dot. We investigate whether the field theory predictions for the universal scaling as well as for the large time behavior successfully describe the time evolution of the Loschmidt echo and the entanglement entropy of microscopic models.Comment: 14 pages, 10 figure

    Logarithmic observables in critical percolation

    Full text link
    Although it has long been known that the proper quantum field theory description of critical percolation involves a logarithmic conformal field theory (LCFT), no direct consequence of this has been observed so far. Representing critical bond percolation as the Q = 1 limit of the Q-state Potts model, and analyzing the underlying S_Q symmetry of the Potts spins, we identify a class of simple observables whose two-point functions scale logarithmically for Q = 1. The logarithm originates from the mixing of the energy operator with a logarithmic partner that we identify as the field that creates two propagating clusters. In d=2 dimensions this agrees with general LCFT results, and in particular the universal prefactor of the logarithm can be computed exactly. We confirm its numerical value by extensive Monte-Carlo simulations.Comment: 11 pages, 2 figures. V2: as publishe

    Microstructure from ferroelastic transitions using strain pseudospin clock models in two and three dimensions: a local mean-field analysis

    Get PDF
    We show how microstructure can arise in first-order ferroelastic structural transitions, in two and three spatial dimensions, through a local meanfield approximation of their pseudospin hamiltonians, that include anisotropic elastic interactions. Such transitions have symmetry-selected physical strains as their NOPN_{OP}-component order parameters, with Landau free energies that have a single zero-strain 'austenite' minimum at high temperatures, and spontaneous-strain 'martensite' minima of NVN_V structural variants at low temperatures. In a reduced description, the strains at Landau minima induce temperature-dependent, clock-like ZNV+1\mathbb{Z}_{N_V +1} hamiltonians, with NOPN_{OP}-component strain-pseudospin vectors S⃗{\vec S} pointing to NV+1N_V + 1 discrete values (including zero). We study elastic texturing in five such first-order structural transitions through a local meanfield approximation of their pseudospin hamiltonians, that include the powerlaw interactions. As a prototype, we consider the two-variant square/rectangle transition, with a one-component, pseudospin taking NV+1=3N_V +1 =3 values of S=0,±1S= 0, \pm 1, as in a generalized Blume-Capel model. We then consider transitions with two-component (NOP=2N_{OP} = 2) pseudospins: the equilateral to centred-rectangle (NV=3N_V =3); the square to oblique polygon (NV=4N_V =4); the triangle to oblique (NV=6N_V =6) transitions; and finally the 3D cubic to tetragonal transition (NV=3 N_V =3). The local meanfield solutions in 2D and 3D yield oriented domain-walls patterns as from continuous-variable strain dynamics, showing the discrete-variable models capture the essential ferroelastic texturings. Other related hamiltonians illustrate that structural-transitions in materials science can be the source of interesting spin models in statistical mechanics.Comment: 15 pages, 9 figure

    Strataster ohioensis, A New Early Mississippian Brittle-Star, and the Paleoecology of its Community

    Full text link
    305-341http://deepblue.lib.umich.edu/bitstream/2027.42/48462/2/ID311.pd

    Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon

    Full text link
    This paper deals with the dead-water phenomenon, which occurs when a ship sails in a stratified fluid, and experiences an important drag due to waves below the surface. More generally, we study the generation of internal waves by a disturbance moving at constant speed on top of two layers of fluids of different densities. Starting from the full Euler equations, we present several nonlinear asymptotic models, in the long wave regime. These models are rigorously justified by consistency or convergence results. A careful theoretical and numerical analysis is then provided, in order to predict the behavior of the flow and in which situations the dead-water effect appears.Comment: To appear in Nonlinearit

    Scattering of elastic waves by periodic arrays of spherical bodies

    Full text link
    We develop a formalism for the calculation of the frequency band structure of a phononic crystal consisting of non-overlapping elastic spheres, characterized by Lam\'e coefficients which may be complex and frequency dependent, arranged periodically in a host medium with different mass density and Lam\'e coefficients. We view the crystal as a sequence of planes of spheres, parallel to and having the two dimensional periodicity of a given crystallographic plane, and obtain the complex band structure of the infinite crystal associated with this plane. The method allows one to calculate, also, the transmission, reflection, and absorption coefficients for an elastic wave (longitudinal or transverse) incident, at any angle, on a slab of the crystal of finite thickness. We demonstrate the efficiency of the method by applying it to a specific example.Comment: 19 pages, 5 figures, Phys. Rev. B (in press
    • …
    corecore